
1.  Introduction
The global ocean is facing growing threats from the accumulation of excess heat and carbon dioxide in the 
Earth System, leading to ocean warming, acidification, and deoxygenation (Bopp et al., 2013; Doney et al., 2009; 
Gruber,  2011; Kwiatkowski et  al.,  2020; Levin,  2018; Whitney,  2022). On top of long-term trends, climate 
variability and extremes on shorter timescales can rapidly alter temperature and have major effects on regional 
biogeochemistry (Bednaršek et al., 2018; Di Lorenzo & Mantua, 2016; Mogen et al., 2022, etc.). Since marine 

Abstract  Anthropogenic carbon emissions and associated climate change are driving rapid warming, 
acidification, and deoxygenation in the ocean, which increasingly stress marine ecosystems. On top of long-
term trends, short term variability of marine stressors can have major implications for marine ecosystems 
and their management. As such, there is a growing need for predictions of marine ecosystem stressors on 
monthly, seasonal, and multi-month timescales. Previous studies have demonstrated the ability to make 
reliable predictions of the surface ocean physical and biogeochemical state months to years in advance, but 
few studies have investigated forecast skill of multiple stressors simultaneously or assessed the forecast skill 
below the surface. Here, we use the Community Earth System Model (CESM) Seasonal to Multiyear Large 
Ensemble (SMYLE) along with novel observation-based biogeochemical and physical products to quantify 
the predictive skill of dissolved inorganic carbon (DIC), dissolved oxygen, and temperature in the surface and 
subsurface  ocean. CESM SMYLE demonstrates high physical and biogeochemical predictive skill multiple 
months in advance in key oceanic regions and frequently outperforms persistence forecasts. We find up 
to 10 months of skillful forecasts, with particularly high skill in the Northeast Pacific (Gulf of Alaska and 
California Current Large Marine Ecosystems) for temperature, surface DIC, and subsurface oxygen. Our 
findings suggest that dynamical marine ecosystem prediction could support actionable advice for decision 
making.

Plain Language Summary  Human-driven climate change is rapidly altering the global ocean, 
with strong warming, increasing acidity, and declining oxygen trends. On top of long-term trends, short term 
variations can lead to rapid changes that can have major effects on marine ecosystems. There is a growing need 
to predict these short-term changes in order to better inform marine fisheries managers. In this study, we use 
a climate model designed to predict changes in the real world months-to-years in advance to better determine 
our ability to forecast changes. Previous studies with similar goals have been limited by sparse observations of 
acidity and oxygen. We utilize brand new observational products that estimate acidity and oxygen levels in the 
subsurface ocean for the first time to analyze subsurface forecasts. Our results demonstrate a high potential to 
predict warming, acidity, and oxygen levels in key marine ecosystems with this climate model. These results 
suggest that there is potential for eventual operational forecasts of marine ecosystems to better inform marine 
managers.
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organisms and ecosystems are highly sensitive to changes in their environment across a range of timescales, 
climate variability and trends will likely alter their health and spatial distribution (Ban et al., 2022; Bednaršek 
et  al.,  2016; Cheung et  al.,  2022; Doney et  al.,  2009; Pörtner,  2010), which is of great concern for fisheries 
and aquaculture systems (Cheung et al., 2022; Duarte, 2022; Greene et al., 2017; Mills et al., 2013; C. Moore 
et  al.,  2021). Multiple methods are used to make forecasts of marine systems, including statistical forecasts 
that rely on empirical relationships and dynamical models that simulate fluid dynamics and basic ecosystem 
processes (Hobday et al., 2016; Jacox et al., 2019, 2020; Tommasi et al., 2017). Dynamical forecasts are much 
more computationally expensive than statistical forecasts and must outperform statistical forecasts to justify their 
cost. Persistence forecasts are a type of statistical forecast that propagate anomalies in the ocean state into the 
future using, for example, autocorrelation and provide regionally valuable predictions that can act as a useful 
baseline for other forecast methods (Hervieux et al., 2019; Jacox et al., 2019).

New developments in Earth System Model (ESM) forecast systems have enabled short term predictions of varia-
bility in ocean physical and biogeochemical state that suggest the possibility of forecast utility for future marine 
resource management. Accurate forecasts of the ocean state months to years in advance have the potential to 
inform management practices such as fisheries closures and annual catch limits to rapidly address expected 
climate variability and change (The State of World Fisheries and Aquaculture 2022, 2022; Tommasi et al., 2017). 
ESM forecast systems assimilate anomalies in the ocean state and simulate the evolution of these anomalies using 
a coupled, dynamic model; they have been in use in forecasting studies for multiple decades (Boer, 2004; Brady 
et al., 2020; Frölicher et al., 2020; Griffies & Bryan, 1997; Lovenduski et al., 2019; Merryfield et al., 2020; 
Séférian et al., 2014). Recent studies conducted with ESM forecast systems have illustrated high forecast skill 
months to years in advance for regional sea surface temperature (Jacox et al., 2019; Stock et al., 2015), marine 
heatwaves (Jacox et al., 2022), subsurface temperature and salinity (Payne et al., 2022), regional surface carbonate 
chemistry and carbon fluxes (Brady et al., 2019, 2020; Ilyina et al., 2021; Li et al., 2019; Spring et al., 2021), 
surface chlorophyll (Park et al., 2019), local scale (Fennel et al., 2019; Siedlecki et al., 2016) and near-shore 
processes (e.g., Brady et al. (2019) in Eastern Boundary Upwelling Systems).

The validation of forecasts of marine stressors is challenged by sparse observations. As such, many short-
term prediction studies of ocean biogeochemistry have relied on ESM reconstructions for forecast validation 
(so-called model predictability) (Frölicher et al., 2020; Krumhardt et al., 2020; Lovenduski et al., 2019; Spring 
& Ilyina, 2020). Frölicher et al. (2020) investigated predictability horizons of multiple marine stressors in model 
preindustrial control forecast, and did not use observational products as such. Among those studies that assess 
true model skill using observations, nearly all focus on forecast validation in the surface ocean, where obser-
vations tend to be more plentiful (Brady et  al.,  2020; Li et  al.,  2019; Park et  al.,  2019). Recent advances in 
ocean biogeochemical observing systems (e.g., Biogeochemical Argo  (2023)), together with the widespread 
use of machine-learning techniques in oceanography, have led to the development of novel global mapped, 
observation-based products that provide estimates of dissolved oxygen (DO) and dissolved inorganic carbon 
(DIC) in four dimensions (latitude, longitude, depth, and time) (Keppler et al., 2023b; Sharp et al., 2022b). These 
new observation-based products facilitate, for the first time, observation-based skill assessment in the interior 
ocean for short-term forecasts of ocean biogeochemistry.

Here, we use output from a state-of-the-art ESM forecast system and new observation-based products to quan-
tify short-term forecast skill in the physical and biogeochemical state of the surface and subsurface ocean. We 
focus on the model's ability to make skillful forecasts of marine ecosystem stressors, as these have the greatest 
potential to inform future management decisions. As we will demonstrate, the ESM generates skillful predictions 
of temperature, dissolved inorganic carbon, and in the surface and subsurface ocean up to 1 year in advance. We 
further assess where and when our dynamic model forecasts outperform persistence forecasts and we estimate the 
as-yet-unrealized forecast skill in marine ecosystem stressors.

2.  Data and Methods
2.1.  CESM-SMYLE

Our primary research tool is the Community Earth System Model version 2 (CESM2) Seasonal-to-Multiyear 
Large Ensemble (SMYLE; (Yeager et al., 2022)). CESM2 simulates the ocean with 60 vertical levels at 1° × 1° 
resolution using the Parallel Ocean Program version 2 (POP2) grid (Danabasoglu et al., 2020). CESM2 includes 
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the Community Atmosphere Model version 6 (CAM6), the Community Land Model version 5 (CLM5), and 
the CICE version 5.1.2 (sea-ice model; CICE5) (Danabasoglu et al., 2020). CESM2 includes an explicit render-
ing of marine biogeochemistry from the Marine Biogeochemistry Library (MARBL), which is configured with 
three explicit phytoplankton functional groups (diatoms, diazotrophs, and picophytoplankton), one implicit group 
(calcifiers), a single zooplankton type, multi-nutrient co-limitation (N, P, Si, Fe), and prognostic marine carbonate 
chemistry (Long et al., 2021; J. K. Moore et al., 2001, 2004, 2013). CESM2 is well validated with available ocean 
observations and renalysis products, marking an improvement over many structural model aspects as compared to 
previous generations, with accurate atmospheric and oceanic teleconnections (Danabasoglu et al., 2020). CESM2 
is also noted for well represented marine biogeochemistry, apart from the large biases associated with deep North 
Pacific oxygen ventilation (Long et al., 2021).

As detailed in the SMYLE prediction system description paper (Yeager et al., 2022), CESM SMYLE hindcasts 
are initialized with physical and biogeochemical output from the Forced Ocean-Sea Ice (FOSI) simulation of 
CESM2 (SMYLE FOSI). SMYLE FOSI is a simulation of the ocean and sea ice components of CESM2 forced 
with the Japanese 55-year Reanalysis (JRA-55; (Kobayashi et al., 2015)) momentum, heat, and freshwater fluxes 
from 1958 to 2019 and atmospheric CO2 concentrations (Figure 1a). CESM SMYLE forecasts are initialized 
quarterly from 1 February 1970 to 1 November 2019 using ocean physical and biogeochemical state variables 
from SMYLE FOSI. The atmosphere is initialized from JRA-55 output directly interpolated onto the CAM6 grid. 
The land is initialized from a forced, land-only simulation within CLM5 forced by the merged Climate Research 
Unit (CRU) and JRA forcing dataset (CRU-JRAv2) applied until equilibrium was achieved. Micro-perturbations 
of the initial atmospheric temperature state (order 10 −14K) are applied to each grid cell to generate a 20-member 
ensemble for each initialization; each ensemble member is integrated for 24  months using the fully coupled 
CESM2 under historical (1970–2014) and shared socioeconomic pathway (SSP) 3-7.0 scenario (2015–2019) 
(Figure 1a). CESM SMYLE has previously demonstrated skillful predictions of ENSO indices and surface ocean 
physical and biogeochemical tracers (Yeager et al., 2022).

We also examine the CESM2 Large Ensemble (CESM2-LE) as an uninitialized model reference for CESM 
SMYLE. CESM2-LE includes 100 ensemble members integrated over 1850 to 2100, produced to examine the 

Figure 1.  Temporal evolution of monthly surface ocean dissolved inorganic carbon anomalies (mmol C m −3) averaged over 
the California Current Large Marine Ecosystem from 2000 to 2020 in (red line) four randomly selected CESM SMYLE 
ensemble forecasts, (black line) SMYLE FOSI, (gray line) CESM2-LE, and (blue line) the observation-based product of 
Keppler et al. (2023b). DIC anomalies (mean between 2000 and 2020 removed) are plotted (a) with seasonal cycle and long-
term trend present, and (b) with seasonal cycle and long-term trend removed.
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roles of internal climate variability and external forcing in a changing climate (Rodgers et al., 2021). The histor-
ical forcing for SMYLE FOSI is identical to that used in ensemble members 51–100 of CESM2-LE. Members 
51–100 have slightly different parameters for ocean deep diffusion, sea ice albedo settings, and MARBL, but still 
act as a useful benchmark for analysis with CESM SMYLE (Yeager et al., 2022). In contrast to SMYLE FOSI 
which is forced by reanalysis, CESM2-LE evolves freely with greenhouse gas forcing over two centuries. As the 
radiative forcing in CESM2-LE is identical to that of CESM2 SMYLE, any difference in behavior stems from 
initialization. Figure 1a shows the evolution of the CESM2-LE ensemble mean DIC in the California Current 
surface in comparison to other data products.

2.2.  Observation-Based Products

We utilize three mapped, global, observation-based products to assess forecast skill: the Roemmich and 
Gilson (2009) Argo-derived temperature product, the Keppler et al. (2023a) dissolved inorganic carbon product, 
and the Sharp et al. (2022a) dissolved oxygen product. While DIC is not a direct measure of ocean acidification, 
ocean acidification (pH) forecasts derived much of their predictability from DIC in Frölicher et al. (2020). The 
Roemmich-Gilson product provides monthly temperature estimates for the upper ∼2,000  m at 1° horizontal 
resolution over 2004 to present using Argo float data, interpolated to create a mapped observational product. The 
Roemmich and Gilson (2009) product is well validated, has been used for more than a decade for global ocean 
analyses, and is regularly updated to include new float data (Roemmich et al., 2015).

Recent work has leveraged combined Argo and Global Ocean Data Analysis Project (GLODAP) climatologies, 
along with machine learning algorithms to derive gap-filled, gridded, depth-resolved products for both DIC 
(2004–2019) (Keppler et al., 2023a) and DO (2004–2022) (Sharp et al., 2022a) on monthly timescales. These 
novel products allow for the first sub-surface model skill assessments at global and regional scales for biogeo-
chemistry. The Mapped Observation-Based Oceanic DIC (MOBO-DIC2004-2019) machine learning approach 
uses GLODAP cruise data for DIC, along with a series of physical and biogeochemical predictor data to derive 
a relationship between the tracers and applies this relationship to obtain mapped monthly fields of DIC in the 
upper 1,500  m of the global ocean ((Keppler et  al.,  2023b); Figure  1). Similarly, Sharp et  al.  (2022b) train 
machine learning algorithms with GLODAP DO and delayed-mode quality-controlled Argo DO data, matched 
with physical and spatiotemporal predictor data, to derive empirical relationships and create a gap-filled upper 
ocean DO product - Gridded Ocean Biogeochemistry from Artificial Intelligence—Oxygen (GOBAI-O2 v1.0). 
Uncertainty estimates in MOBO-DIC and GOBAI-O2 include uncertainties stemming from the measurements, 
the representation of measurements on a monthly 1° grid, and the prediction uncertainty of the method. The 
global mean total uncertainty, which accounts for these three sources of uncertainty using standard error propaga-
tion is 18 μmol kg −1 in MOBO-DIC and 7.6 μmol kg −1 in GOBAI-O2 (Keppler et al., 2023b; Sharp et al., 2022b). 
Keppler et al. (2023b) conducted an in-depth analysis of how MOBO-DIC compares to independent data from 
time-series stations, BGC-Argo floats, and with synthetic data from an ESM; though GLODAP observations are 
sparse in time and space and are seasonally biased with few winter observations, MOBO-DIC captures both the 
seasonal and interannual variability, especially when averaging over large regions. Sharp et al. (2022b) validated 
GOBAI-O2 using synthetic data from an Earth System Model and demonstrated agreement in local-scale DO 
seasonality (e.g., R 2 = 0.92 ± 0.17 in the upper 200 dbars) and DO interannual variability (e.g., R 2 = 0.66 ± 0.37 
between 200 and 1,000 dbars).

Observation-based data sets of DIC and DO fill large spatial and temporal gaps. As such, we average over relatively 
large regions in this analysis (see Section 2.3). As these regions have sufficient training data from GLODAP and/
or ARGO, we are confident in the regionally aggregated estimates of DIC and DO. These observation-derived 
products do not include estimates of DIC or DO for the Arctic Ocean, and MOBO-DIC excludes the Mediterra-
nean Sea.

2.3.  Statistical Approach

We present forecast skill for three tracers - temperature, DIC, and DO - at two depths - the surface and below the 
mixed layer at 300 m (as in Frölicher et al. (2020)). Model skill analysis was completed at two spatial scales: large 
scale U.N. F.A.O. Fisheries Regions (dividing the open ocean) and Large Marine Ecosystems (LMEs, dividing 
the coastal ocean). We focus our analysis on LMEs with a relatively large number of DIC and DO observational 



Earth’s Future

MOGEN ET AL.

10.1029/2023EF003605

5 of 15

profiles in GLODAP and BGC Argo, including three LMEs in the North 
Pacific - the Kuroshio Current LME, the California Current LME, and the 
Gulf of Alaska LME - and three other regions - the Bay of Bengal LME, 
the Norwegian Sea LME, and the Greenland Sea LME (Table 1; Figure S1 
in Supporting Information S1). We first sorted the LMEs according to the 
total number of profiles used in the MOBO-DIC/GOBAI-O2 algorithms and 
selected LMEs with high observations relative to the rest of this list.

We remove long-term anthropogenic trends (first order, linear) and seasonal 
climatologies from all data before assessing forecast skill (see, e.g., 
Figure 1b). We remove model drift from SMYLE forecasts by creating anom-
alies from model climatology that vary with lead time. Forecast skill at each 
month after initialization is quantified via the anomaly correlation coefficient 
(ACC; Pearsons r-value as shown in Appendix A Equation A1; Figure S2 in 
Supporting Information S1) and mean absolute error (MAE) of the ensemble 
mean forecast and the observational product. MAE values for each tracer are 
normalized by the temporal standard deviation of each tracer at each depth in 
a given region (see Appendix A Equation A2). The significance (95% Confi-
dence Interval) of ACCs for SMYLE skill assessment is calculated relative 

to zero for each lead-time. We generate persistence forecasts by correlating the observed state at initialization 
with a future state, and multiplying by the autocorrelation function of the observed state at this lag (“damped” 
persistence). The skill of the uninitialized forecast is assessed via the CESM2-LE ensemble mean state (Figure S2 
in Supporting Information S1). Potential predictability in CESM SMYLE is calculated via correlation of CESM 
SMYLE with SMYLE FOSI. In the interest of brevity, we primarily focus our presentation in this manuscript on 
the February SMYLE initialization but we include key results from all initializations in the Supplemental.

We assess the unrealized forecast skill, or the difference between the potential predictability of CESM SMYLE 
and the realized forecast skill as compared to the observational products, using the following approach. First, 
we count the total number of forecast lead months in the first 13 months for which CESM SMYLE forecast 
skill (r) is larger than 0.5 and exceeds statistical persistence forecasts. Then, we repeat this process for model 
predictability (wherein SMYLE FOSI is the baseline), and compare the counts. We further quantify the impact of 
El Nino-Southern Oscillation (ENSO) on background model state by calculating the ACC between the Nino3.4 
index and the tracers of interest in SMYLE FOSI.

2.4.  Model Validation

We assess the ability of the SMYLE FOSI to capture spatiotemporal variability in temperature, DIC, and DO by 
correlating seasonal climatologies and detrended, deseasoned anomalies. In the U.N. F.A.O. Major Fishing Areas, 
modeled Temperature, DIC, and DO climatologies are well matched with those from the observation-derived 
products (Figures S3 and S4 in Supporting Information S1). Seasonal climatologies are highly correlated for 
most of the U.N. fisheries regions (Figure S3 in Supporting Information  S1). In certain subsurface regions, 
such as the southeastern Pacific and eastern equatorial Atlantic (DIC) and the northwest and northeast central 
Pacific (DO), we find low climatological correlations or anticorrelations, potentially limiting forecast skill 
(Figure S3 in Supporting Information S1). Anomalies are also highly correlated, with good agreement between 
observation-derived products and SMYLE FOSI in much of the surface and subsurface ocean for all tracers 
(Figure S4 in Supporting Information S1), however we note a lack of high correlation in subsurface DIC and 
DO. These disparities may be related to issues with model representation (e.g., CESM2 deep oxygen ventilation) 
and observations (relative temporal scarcity of observations). Disparities, regardless of their source, may have 
contributed to low skill in the noted regions.

3.  Results
3.1.  U.N. F.A.O. Fisheries Regions

CESM SMYLE exhibits high forecast skill for surface temperature, DIC, and DO 1 month after initialization in 
nearly all U.N. fisheries regions (Figure 2, first column). Subsurface DIC forecast skill is notably absent 1 month 

MOBO-DIC GOBAI-O2

Gulf of Alaska 195 1,552

California Current 179 944

Kuroshio Current 292 1,131

Bay of Bengal 214 1,190

Norwegian Sea 218 778

Greenland Sea 608 1,062

Note. LMEs noted here are shown in Figure S1 in Supporting Information S1.

Table 1 
The Number of In Situ Observational Profiles Used in the Creation 
of MOBO-DIC (From GLODAP Cruise Data) and GOBAI-O2 (From 
GLODAP Cruise and ARGO Float Data) Observational Products in Six 
Select Large Marine Ecosystems (LMEs): The Gulf of Alaska (GOA), 
California Current (CalCS), Kuroshio Current, Bay of Bengal, Norwegian 
Sea, and the Greenland Sea
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after initialization, while temperature and DO exhibit higher subsurface skill in the majority of regions. Although 
there is a general decline in skill as the fully coupled forecast model evolves further from its initial state (beyond 
the first lead-time), we find long-lasting (multi-month) skill in many regions that display high skill in the first 
months after initialization, including in the East-Central and Northeast Pacific (Figures 3a–3f). Corresponding 
to the decline in skill with forecast lead time, there is also growth in the normalized MAE as the model evolves 
further from initialization (Figures 3s–3x).

Persistence skill is higher than forecast skill 1 month after initialization for DIC (surface and subsurface) and DO 
(subsurface) (Figure 2, second column) which likely reflects poor agreement between observations and CESM 
SMYLE. As with initialized forecast skill, persistence forecasts generally demonstrate a decline in skill with fore-
cast lead time (Figures 3g–3l). Three tracer-depth combinations show particularly high persistence skill: surface 
and subsurface DIC and subsurface DO, with ACCs close to one with 12 months lead-time.

Is the initialized model capable of producing forecasts whose skill exceeds that of statistical persistence? We 
answer this question by comparing initialized forecast skill to persistence forecast skill across a range of forecast 

Figure 2.  Various metrics of forecast skill 1 month following February forecast initialization in the U.N. F.A.O. fisheries 
regions: (first column) forecast skill, (second column) persistence forecast skill, (third column) predictability. Forecast skill is 
shown for three variables and two depth levels: (first row) surface temperature, (second row) 300 m temperature,(third row) 
surface DIC, (fourth row) 300 m DIC, (fifth row) surface DO concentration, and (sixth row) 300 m DO concentration.
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lead times (Figure 3). While the persistence skill often matches (or even exceeds) initialized forecast skill in 
the 1–2 months following initialization (see, e.g., Figure S2 in Supporting Information S1), we find that some 
U.N. fisheries regions exhibit higher initialized forecast skill than persistence skill after this period, and that this 
behavior tends to be relatively long-lasting (up to 13 months post-initialization; Figure 3). To draw attention to 
this multi-month period for which initialized forecast skill exceeds persistence skill, we count the total number of 
months in which forecast skill is both high (r > 0.5) and exceeds persistence for the first 12 months after initiali-
zation for each of the U.N. fisheries regions (Figure 4; Figures S5, S6, and S7 in Supporting Information S1). We 
find up to 10 months of high, persistence skill exceeding forecast skill for most tracer-depth combinations across 
the U.N. fisheries regions, with consistently high counts in the North Pacific (Figure 4). Temperature in both 
the surface and subsurface demonstrated high, persistence-exceeding forecast skill in many fisheries regions for 
up to 10 months, while surface DIC and DO generally display lower counts. Subsurface DIC is nearly devoid of 
high, persistence-skill-exceeding initialized forecast skill - this is a reflection of low forecast skill combined with 
particularly high subsurface persistence skill (Figures 3d and 3p). The number of skillful months does not does 
demonstrate large variability with different months of initialization.

We find high, persistence skill exceeding potential predictability (forecast skill quantified using SMYLE FOSI, 
rather than observations) in surface and subsurface temperature and DO across many of the U.N. fisheries regions 

Figure 3.  Various metrics of forecast skill over 13 lead months in the U.N. F.A.O. fisheries regions for February forecast initializations: (first row) forecast skill, 
(second row) predictability forecast, (third row) persistence skill, and (fourth row) normalized mean absolute error of the initialized forecast. Dots in the first and 
second row indicate skillful forecasts (Model Forecast > Persistence forecast and r > 0.5). Forecast skill is shown for three variables and two depth levels: (first column) 
surface temperature, (second column) 300 m temperature, (third column) surface DIC, (fourth column) 300 m DIC, (fifth column) surface DO concentration, and (sixth 
column) 300 m DO concentration. The Arctic is not included in observational data products, and thus only appears in model predictability.



Earth’s Future

MOGEN ET AL.

10.1029/2023EF003605

8 of 15

(Figure 2) for up to 10 months (Figure S8 in Supporting Information S1). In contrast, surface and subsurface DIC 
potential predictability displays substantially lower lead-month counts (Figure S8 in Supporting Information S1) 
due to long-lasting persistence forecast skill in SMYLE FOSI.

We find large potential to gain long-lasting forecast skill (Figure  5). We compare the number of skillful 
(Figure  4) and predictable (Figure S8 in Supporting Information  S1) forecast months and find that potential 
gain is long-lasting in surface and subsurface temperature and DO, whereas we find almost no potential to gain 
long-lasting forecast skill in surface and subsurface DIC (Figure 5). The lack of potential gain in surface and 
subsurface DIC is related to the high persistence skill in both observations and model reconstructions, as seen in 
Figures 3i and 3j, where model predictability is high but falls below persistence forecasts. The consistent potential 
for gain in model skill relative to model predictability indicates that improvements in both the initialized model 
and observational products could enhance forecast skill.

3.2.  Large Marine Ecosystems

On smaller regional scales, CESM SMYLE displays high, long-lasting forecast skill in three observation-rich 
North Pacific Large Marine Ecosystems. In Figure 6, we compare temperature, DIC, and DO initialized fore-
cast skill with persistence forecast skill and uninitialized model forecast at the surface and 300 m for the first 
13 months post-initialization. The Gulf of Alaska (a–f) displays high skill in both the initialized and persistence 
forecasts at the surface that decays with forecast lead time. In contrast to the surface, skill is very long-lasting 

Figure 5.  The potential gain in the number of months of forecast skill, estimated as the difference in the number of months for which predictability is high (r > 0.5) 
and exceeds persistence (Figure S8 in Supporting Information S1), and the number of months for which forecast skill is both high and exceeds persistence (Figure 4) in 
the first 12 months following February model initialization in the U.N. F.A.O. fisheries regions for surface (top) and subsurface (bottom) variables. Positive numbers 
indicate that predictability exceeds forecast skill.

Figure 4.  The total number of lead-months over which forecast skill is both high (r > 0.5), and exceeds persistence skill in the first 12 months following February 
model initialization in the U.N. F.A.O. fisheries regions for surface (top) and subsurface (bottom) variables. Hatching indicates that there are 0 skillful months.



Earth’s Future

MOGEN ET AL.

10.1029/2023EF003605

9 of 15

at depth with high skill (r = 0.6) for over a year following initialization at 300 m. We found skillful forecasts in 
the surface of the Gulf of Alaska for 7 months and ∼10 months in the subsurface. The California Current (g–l) 
has high surface and subsurface skill for temperature with some skill up to 1 year in advance and relatively high 
surface skill for DO. In contrast, the Kuroshio Current demonstrated low skill, particularly notable in the subsur-
face. In the Kuroshio Current (m–r), there is high skill (r = 0.7) in the surface for DIC, and moderate skill for 
surface temperature and DO. In contrast, at 300 m, there are no skillful forecasts (excepting DIC persistence). 
The month of initialization has some impact on forecast skill in North Pacific LMEs, with certain initializations 
outperforming others; this stands in contrast with the number of skillful months in Fisheries Regions, which was 

Figure 6.  (solid) Forecast skill, (dashed) persistence forecast skill, and (dotted) uninitialized forecast skill in three North Pacific Large Marine Ecosystems for quarterly 
model intializations over 13 lead-months. Triangles indicate statistically significant skill at the 95% confidence interval.
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relatively insensitive to month of initialization (Figure 4). We found no times/places where forecast skill for a 
particular monthly initialization is statistically distinct from the other three initializations, although individual 
pairs are statistically distinct.

We find relatively low forecast skill in three other observation-rich regions outside of the North Pacific (Figure 
S9 in Supporting Information S1). In the Bay of Bengal, only temperature forecasts display high and long-lasting 
skill in both the surface and subsurface; subsurface persistence and uninitialized forecasts for DO are also high 
and long-lasting. In the North Atlantic, neither the Greenland Sea nor Norwegian Sea display consistently high 
skill. The Greenland Sea is highly persistent in the subsurface for DIC and DO. The Norwegian Sea exhibits 
skillful surface forecasts for all three tracers, and for subsurface temperature and DO. Although subsurface DIC 
is highly persistent, we find low initialized forecast skill except for the November model initialization.

Across the observation-rich LMEs, those whose physical and biogeochemical properties are highly correlated 
with the El Niño-Southern Oscillation (ENSO) are also the LME and tracer combinations that tend to exhibit 
high forecast skill. We calculated the correlation between the Niño3.4 index and a given variable in each LME of 
interest for a range of ENSO lead times (Table 2; Table S1 in Supporting Information S1). For example, temper-
ature, and to some extent DIC and DO variations in the Gulf of Alaska and California Current LMEs are highly 
correlated with ENSO (Table 2, Table S1 in Supporting Information S1); the forecast skill for these tracers/LMEs 
is also relatively high (Figure 6). In contrast, the other LMEs of interest (aside from surface temperature in the 
Bay of Bengal) show little relationship with ENSO and also low forecast skill. We speculate that representation 
of ENSO state at initialization along with good ENSO prediction characteristics of CESM SMYLE in the first 12 
forecast months (Yeager et al., 2022) are key contributing factors to high prediction skill for ocean biogeochem-
ical fields in the eastern North Pacific.

4.  Conclusions and Discussion
We use an ESM forecast system and new ocean biogeochemical observational products to quantify forecast skill 
for surface and subsurface ecosystem stressor variations 1–13 months in advance. We find high skill values for 
three marine stressors—temperature, oxygen, and dissolved inorganic carbon—up to 12 months in advance at two 
spatial scales. The initialized, dynamic forecast system (CESM SMYLE; (Yeager, 2022)) often produces higher 
forecast skill than both persistence forecasts and uninitialized forecasts using the same ESM. We also find large 
potential to gain multi-month forecast skill in temperature and DO, but not for DIC. Ocean biogeochemical fore-
cast skill is somewhat insensitive to the month of initialization, as evidenced by the lack of statistically distinct 
forecast skill across various monthly initializations in our regions of interest.

In some observation-rich Large Marine Ecosystems, such as the Gulf of Alaska, we find that both the initialized 
forecast skill and statistical persistence skill tend to be higher in the subsurface than at the surface. As 300 m is 
well below the dynamic mixed layer and isolated from the atmosphere, we tend to observe long-lasting initialized 
and persistence forecast skill here. At these depths, statistical persistence skill often outperforms initialized fore-
cast skill. This leads to very few months for which initialized skill is both high (r > 0.5) and exceeds the persis-
tence forecast skill. The most notable exception to increasing skill with increasing depth is the lack of model skill 
in the subsurface Kuroshio Current. This is likely a reflection of the inability of the model to effectively represent 
the complex dynamics of western boundary currents. As expected, we note that uninitialized forecasts generally 

GOA CalCS. Kuroshio Bay of Bengal Greenland Sea Norwegian Sea

Surface Temp 0.42 0.48 0.08 0.40 0.16 0.21

300 m Temp 0.42 0.48 0.08 0.4 0.16 0.21

Surface DIC 0.44 0.16 0.32 0.17 0.19 0.06

300 m DIC 0.6 0.28 0.17 0.25 0.18 0.13

Surface Oxygen 0.3 0.41 0.04 0.07 0.12 0.26

300 m Oxygen 0.61 0.22 0.16 0.05 0 0.1

Table 2 
Correlation (r) of SMYLE FOSI Surface and 300 m Temperature, DIC, and Oxygen Concentration and the Niño3.4 Index in 
Observation-Rich Large Marine Ecosystem Regions at Zero-Lag Months
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perform worse than initialized and persistence forecasts, except for subsurface DO in the Bay of Bengal (unini-
tialized outperforms initialized). We also note an unexpected cyclical pattern in uninitialized forecasts in the Bay 
of Bengal for surface DIC and in the subsurface of some North Pacific LMEs, despite the seasonal climatologies 
having been removed from all data.

This study builds on decades of prior work utilizing ESMs to forecast a variety of marine stressors months to 
years in advance. On seasonal to decadal timescales, SST predictive skill has often been closely linked to modes 
of internal climate variability (Boer, 2004; Griffies & Bryan, 1997; Jacox et al., 2019). While we found some 
influence of ENSO in our study regions (particularly the northeast Pacific LMEs), this influence could not fully 
explain forecast skill. Future work is thus needed to identify the role of ENSO in near-term forecast skill.

Our findings align with those reported in another study which quantifies and explores the drivers of surface and 
subsurface biogeochemical forecasts. Frölicher et al.  (2020) investigated the predictability of multiple marine 
stressors on annual to decadal timescales in both the surface and subsurface using a perfect predictability config-
uration of a different ESM. Results from their study also indicated a close connection between forecast skill for 
surface temperature and oxygen (the latter of which is strongly affected by solubility/temperature), with a weaker 
connection at depth, due to the importance of biological processes in driving oxygen variability. Also similar to 
our study, Frölicher et al. (2020) noted increasing forecast skill with depth, where waters are less affected by the 
rapidly varying atmosphere.

As noted above, CESM2 does not accurately represent oxygen in the deep North Pacific Ocean (Long et al., 2021). 
While the main depths of concern fall below our forecasting interest, it is likely that poor representation of oxygen 
did impact our results at 300 m. As noted in Frölicher et al. (2020), surface predictions of oxygen are largely 
driven by solubility/temperature effects, while at depth other factors are at play. For this reason, we are fully 
confident in our surface results but have some concerns with our results from 300 m as they may be influenced 
by CESM2 oxygen representation. Further, low correlations of regional inter-monthly variability and seasonal 
climatology (Figures S3 and S4 in Supporting Information S1) may have impacted DO and DIC forecast skill.

We find that month of initialization has little impact on forecasts in large regions, but can impact smaller scale 
regions (LMEs). We attribute the sensitivity of smaller scale region predictions to month of initialization to the 
influence of coastal processes and dynamics on prediction. Coastal regions (e.g., LMEs in this study) exhibit 
seasonally varying dynamics (e.g., spring upwelling in the California Current System), which might lend skill 
that varies with the month of initialization or the month that is being forecast. While our model resolution is fairly 
coarse, LME-scale analysis with similar, coarse-resolution, global forecast systems has demonstrated the ability 
of such models to accurately represent both physical and biogeochemical properties in LMEs (Brady et al., 2019; 
Brady et al., 2020; Jacox et al., 2019, 2020, etc.).

While we demonstrate high forecast skill in many cases, comparison with model predictability highlights varia-
bles and regions for which skill could be improved further. The potential gain in model skill (i.e., it's shortcoming 
relative to predictability) is apparent, especially for temperature and DO forecasts. In contrast, DIC forecasts 
show relatively little gain possible relative to predictability, primarily a result of the high skill of statistical 
persistence forecasts. DIC is relatively insensitive to temperature variability, in contrast with DO which is highly 
temperature dependent. High memory for DIC indicates that persistence forecasts might continue to be effective 
in many regions, although it is important to recognize that DIC is not the equivalent of acidity.

Increases in ocean biogeochemical in situ observations (e.g., DO measurements on Biogeochemical Argo floats) 
will be crucial for realizing potential gains in model skill, by offering new tools for validation and improvements 
in initialization. The spatial variation in ocean biogeochemical prediction skill likely stems both from limits in 
the observational record and issues in Earth System Model representation of regional processes. Regions with 
high observational density are both better understood and simulated. Observational data can be also used to 
better identify issues with current model structures and lead to improvements. The assimilation of ocean biogeo-
chemical observations into ESMs (Verdy & Mazloff, 2017, e.g.) may be an exciting development for operational 
biogeochemical forecasting in the future.

The fisheries and aquaculture industry is expected to grow by up to 14% by 2030, with aquaculture projected 
to overtake capture fisheries as the largest source (The State of World Fisheries and Aquaculture 2022, 2022). 
As marine ecosystems are increasingly altered by anthropogenic climate change and fisheries adapt, there will 
be a growing need for accurate forecasts of multiple marine stressors months to years in advance. The CESM 
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initialized dynamical forecast system can successfully predict variations in biogeochemical stressors in both 
the surface and subsurface ocean. In addition to previous work focused primarily on physical variables (Jacox 
et al., 2020; Payne et al., 2017; Tommasi et al., 2017, e.g.,), dynamical forecasting of biogeochemistry is thus a 
promising new direction for the fisheries and aquaculture industry.

Future work should expand on the drivers of skill of physical and biogeochemical stressors within dynamical 
modeling prediction systems and explore prediction systems using alternate dynamical model structures. In this 
study, we note that regions of high skill (primarily in the Northeast Pacific) are also regions with large influences 
from ENSO. ENSO is a predictable phenomena in both linear inverse and dynamical modeling experiments 
(Barnston et al., 2019; J. Shin et al., 2020; Yeager et al., 2022). While ENSO can be closely connected to marine 
stressors, as noted by Capotondi et al. (2019), this relationship can only explain up to ∼36% of variability. Higher 
resolution simulations of LMEs within future generations of ESMs or highly tuned regional ocean models (e.g., 
J-SCOPE; (Siedlecki et al., 2016)) may provide further insight into surface and subsurface ocean biogeochemical 
forecast skill.

In this study, we focus on dynamical forecasts and simple statistical forecasts (persistence), but there exist other 
statistical approaches for short-term predictions. Statistical Linear Inverse Models (LIMs) have been used to 
make accurate predictions of El Niño-Southern Oscillation (Capotondi et al., 2019; J. Shin et al., 2020), coastal 
sea surface height and temperature (Shin & Newman,  2021), and the North Atlantic Oscillation (Albers & 
Newman,  2021) that are competitive with dynamical forecast systems. Various machine learning (ML) tech-
niques have also been used to create forecasts that are competitive with dynamical modeling systems for predict-
ing tracers such as sea surface temperature and height anomalies (Shao et al., 2021; Wolff et  al., 2020), and 
forecasts of atmospheric events, such as atmospheric rivers (Chapman et al., 2019). Future work may rely on ML 
techniques to both accelerate model integration and assimilate observations into models (Gettelman et al., 2022), 
as in Gloege et al. (2022) with marine carbon fluxes. These statistical approaches have also demonstrated promise 
in predicting different aspects of the Earth System and are often computationally inexpensive when compared 
with initialized dynamical models, although few studies have directly studied the statistical predictability of 
marine biogeochemical tracers of interest.

Here, we demonstrate the ability to predict short-term variations in the state of marine stressors, but our 
results also suggest that there may be potential for forecasting extreme events. Marine heatwaves, for exam-
ple, can have profound impacts on biogeochemistry throughout the water column (Burger et al., 2020; Mogen 
et al., 2022). Prior work has demonstrated that dynamical, initialized modeling systems can effectively predict 
heatwaves (Jacox et al., 2022), but has not examined the potential co-occurring biogeochemical effects which 
often interact with warm temperatures to redistribute species and affect human uses of the ocean. Future 
work should focus on using dynamical modeling systems to study the ability to predict ocean biogeochemical 
extreme events (ocean acidification extremes, deoxygenation events), and their connectivity to physical climate 
extremes.

CESM SMYLE demonstrates high physical and biogeochemical predictive skill multiple months in advance in 
key oceanic regions and frequently outperforms persistence forecasts. The three variables that we analyze are 
important stressors of living marine resources. The regions in which we find high forecast skill, particularly in the 
North Pacific, hold very large and important fisheries. The continued development of ESM forecasting systems 
and novel observation-based products may allow for improved marine management in the coming decades.

Appendix A
A1.  Anomaly Correlation Coefficient (ACC)

Initialized, persistence, and predictability forecasts were assessed with ACC to determined forecast skill from −1 
to 1. ACC is a function of initialization month (m) and lead-time (t) in month (Hervieux et al., 2019).
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where F′ is the forecast anomaly, O′ is the verification field anomaly and ACC is calculated over the period 
2004–2020.

A2.  Normalized Mean Absolute Error (nMAE)

nMAE was assessed for initialized forecast as another metric for skill that assesses total error. nMAE, an absolute 
value, was normalized relative to variance of a given tracer in order to compare across variables and depths.

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =

1

𝑛𝑛

∑𝑛𝑛

𝑖𝑖=1
|𝑎𝑎 − 𝑏𝑏|

𝜎𝜎
� (A2)

where n is the sample size, a and b are the time series to compare for a given variable, and σ is the standard devi-
ation of the tracer over a given period.

Data Availability Statement
The CESM Seasonal to Multiyear Large Ensemble and SMYLE FOSI are available at: https://www.earthsys-
temgrid.org/dataset/ucar.cgd.cesm2.smyle.html (Yeager,  2022). The CESM2 Large Ensemble data are availa-
ble at: https://www.earthsystemgrid.org/dataset/ucar.cgd.cesm2le.output.html (IBS Center for Climate Physics 
et al., 2021).

Argo data were collected and made freely available by the International Argo Program and the national 
programs that contribute to it (http://www.argo.ucsd.edu, http://argo.jcommops.org). The Argo Program 
is part of the Global Ocean Observing System (Argo,  2023). GOBAI-O2 data are available at https://doi.
org/10.25921/z72m-yz67 (Sharp et al., 2022a). The MOBO-DIC summary paper can be found at DOI: https://
doi.org/10.1029/2022GB007677 (Keppler et al., 2023a).

Shapefiles for Large Marine Ecosystems were found at https://www.sciencebase.gov/catalog/item/55c77722e4b-
08400b1fd8244 (FAO, 2020). Shapefiles for U.N. FAO Fisheries Regions were found at https://www.fao.org/
fishery/en/area/search (Sherman et al., 2017).
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